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A criterion for determining atomic coordinates in the Fourier method, applicable to resolved or 
unresolved peaks, is introduced. The full equations for coordinate refinements according to this 
criterion are shown to have an exact similarity with the normal equations of least squares for the 
function R ---- Zw(IFoI--IFclF, where Fo and Fc are the observed and calculated structure am- 
plitudes for reflexions h(= h, k, l), w(h) is a weight function, and the sum is taken over the observed 
orders h. A criterion for finding atomic coordinates from the Patterson density leads to refinement 
equations which are similar to the normal equations for the function R 2 = Zw"(]Fo] ~ -  ]Fc[2), where 
w'(h) is another weight function. Both centrosymmetric and non-centrosymmetric space groups 
are considered. Approximate forms of the equations and the relationship of this work to earlier 
work by Booth, Cochran, and Cruickshank are discussed. 

Notation 

Throughout  this  paper  the suffices r, s, t and u 
refer to atoms or atomic positions, while the  suffices 
i , j  and k refer to any  of the three coordinate directions; 
thus xt~ denotes the kth coordinate of a tom t. 

The following nota t ion  is not  explained in the text :  

at Length  of i th  axis of uni t  cell. 
f i  Scattering factor of a tom r. 
Fc Calculated structure factor. 
Fo Observed structure factor. 
hi Plane index. 
o~ Calculated phase angle. 
0 27~(..~,h~xUa~); ( i =  1 , 2 , 3 ) .  

i 

O, 2 z ( Z  h~x, da~ ) . 
i 

~v Fini te  tr iple summat ion  over all planes ob- 
3 served. 

1. I n t r o d u c t i o n  

Cochran (1948a, b) showed tha t  the coordinates of 
a tom r which minimize  

z! ~0 = 3 / ,  (IF°I-IFd)~ (1.1) 

are the same as those given by  the Fourier  series for 
the electron densi ty  

1 
= ~ ~ IFI cos (0 -~)  (1.2) 

when this is corrected for finite summat ion  and peak 
overlapping. Similar ly  coordinates found by minimizing 

R = Zw(1Fol-- IFcl)  ~ (1.3) 

are the same as those found from the Fourier  series 

@r 1 
= -~ ~ w'frlF [ cos ( 0 - - ~ ) .  (1.4) 

For  the f inal  stages of s tructure ref inement,  
Cruickshank (1950) pointed out an approximate  
equal i ty  between the normal  equat ions of least squares 
(Hughes, 1941) and the equations governing the  
determinat ion of coordinates from differential  Fourier  
syntheses. 

All these results were derived on the assumpt ion  
tha t  the peaks representing the atoms were resolved. 
In  the present communicat ion  this restriction is 
removed, and a modified Fourier  method capable of 
dealing with resolved or unresolved peaks is described, 
the equations of which are shown to have  an exact  
s imilar i ty  with the normal  equations. Centrosymmetr ic  
space groups are t reated in § 2, and non-centrosym- 
metr ic  space groups in § 3. 

In  § 4 we shall  consider the relations between 
mlmmlzmg  

~Y, w"(lFo[2--iF¢[2) 2 (1.5) 

and a method working on the Pat terson density.  
The condition tha t  ~, (1.1), is a m i n i m u m  implies 

(Cruickshank, 1949, (2.3)) tha t  the slopes at atom r 
of the observed and calculated electron densities, 
@o and @c, are equal. This consequence of the least- 
squares condition is a possible criterion to adopt  for 
determining coordinates in the Fourier  method,  ff we 
wish to correct for finite series and peak overlapping 
effects. The criterion is applicable to unresolved as 
well as to resolved peaks. We shall  call the Fourier  
method using this  criterion the modified Fourier  
method.  In  some circumstances it  leads to the same 

_ 

coordinates as Booth 's  (1945, 1946) back-correction 
method;  this  is discussed in § 2.4. 

33* 
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2. Cen t rosymmet r i c  space ~,roups 

2.1. Equations of the modified Fourier method 
In this section we shall derive the equations for 

small coordinate refinements in the modified Fourier 
method for centrosymmetric space groups. 

The conditions we wish to satisfy are that  the slopes 
in the x~ direction at the position of atom r of the 
observed and calculated electron densities shall be 
equal, for all i and r. We denote this by 

OXi]r \ ~Xi]r 

The problem is to move the independent parts of 
the calculated structure so that  these conditions are 
satisfied. If we have a set of trial coordinates, differing 
only by small amounts from the correct set, we can 
obtain the set of refinements e,# to the j th  (x, y or z) 
parameter of atom s by equating the zeroth- and 
first-degree terms of the multivariate Taylor ex- 
pansions of the two sides of (2.1). Thus 

/0Qo\ - / 02Qo \ 
- -  + Z e , S -  

\~Xi]r ~ \~Xi~Xi/r s, ~ -~Xs] \OXi]r ' 

where the left-hand side gives the value of O~o/OXi at 
a point distant (e~, e~y, e~) from the trial position 
of atom r, and on the right hand side the first two 
terms give OQ¢/Oxi near r and the third group of terms 
allows for the changes in (oQd~xi)~ due to changing 
all the parameters by s~j. In this last group of terms 
we may regard ~¢ either as a function of the inde- 
pendent parameters x~i (or Q~), or as a function of all 
the atomic coordinates x~i, these being related in sets 
by symmetry. In the former case the summation 
Z is over only the independent parameters; in the 
s, j 

latter case the summation is over all the atomic 
coordinates, and we have relations between the 8~'s, 
e.g. s~i-~--s t i ,  for atoms s and t related by the 
centre of symmetry. Unless otherwise stated it will 
be convienient to regard Q~ as a function of the inde- 
pendent parameters. If, for the given set of trial 
coordinates, we denote by ~ the calculated electron 
density of atom s and those atoms related to s by 
symmetry, we may write the coefficient of e~ in 
(2.2) as 

~Xs I \~Xi]r ' 

since ~¢ = 2_:~s. Denoting by F~ that  part of F~ due 
$ 

to atom s and those atoms related to s by symmetry, 
the series for (2.3) is 

1 2~ _ h 0F~ - - -  2," . - -  sin 0,. (2.4) 
V a i a * Oxs i 

There is an equation like (2-2) for each independent 
direction at each independent atom, hence we may 
obtain a set of simultaneous linear equations which 
determine the parameter refinements s~. 

The omission of the second group of terms from each 
side of (2.2)gives equations determining the para- 
meters from the conditions that  the slopes of the 
observed and calculated electron densities are to be 
equal at the trial positions of the atoms. We shall 
call these equations, 

~x~/~ \~x~/~ ~'X~,7 ~ ~x~j r' 

the equations of the modified differential Fourier 
method, using the word differential to indicate that  
the equations are correct only for small refinements. 

Usually the terms omitted from (2.2) are not of 
importance. In § 2.3 we shall consider the approximate 
forms of the equations (2.5) which may be used in 
practice. 

2.2. The normal equations of least squares 
In this section we shall transcribe the normal 

equations for least squares into a form rather similar 
to (2.5). We shall consider the function 

t t  --- .~, w(Fo--Fc) 2 , (2.6) 

where w is the weight of each independent plane, 
the summation is over the independent planes ob- 
served, and we omit the moduli signs as compared 
with (1.3) as the F ' s  are all real. The normal equations 
for R, (2.6), are of the type 

Zc~,  vssj -- b~, (2-7) 
where s, 

b,~ ~ .Y,W(Fo--Fc) OFt 
axri 

and 
c~, s1 = Z w 0F~ 0F¢ 

the summations being over independent planes. 
We can take the summations over all planes ob- 

served, that  is the independent planes and those 
related to them by symmetry, by putting 

w ' p  = w ,  (2.s) 

where p is the number of planes related by symmetry. 
Further, if q is the number (including atom r) of 
atoms related to atom r by symmetry, oFdox,~-- 
oFr[ox ~ is a sum of a number of terms of the type 

4- 2g hif~ sin 0, 
a~ 

so that, using the symmetry, we may write 

27~ 
b. = - q  : . V  wT ,(Fo--Fo) sin 0r, 

a ,  
(2.9) 
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and 

2~ w' h aF~ c,~.~j=-q~2.'~ ~ 7, ~ - j s i n 0 , .  (2.10) 

Introducing a weighted electron density 

1 
Q" = -~ ~ w'LF cos 0 ,  

derived from the ordinary finite-series electron density 
by weighting each term by a factor w'fi, we can 
write the normal equations in the form 

o, (vO~) "4-.~,e . ~--~- (00:) ,  (2-11) 
\~Xi/r \OXi]r s, ] s? OXs] \aXi/r 

which is obtained by comparing (2.10) with (2.4) and 
dividing by q V. 

This differs from the modified differential Fourier 
equation (2.5) only by the presence of the weighting 
factor w'fr in each term of the various series. Com- 
parison of (2.5) and (2.11) demonstrates the formal 
similarity between the equations of the modified 
differential Fourier method and the normal equations. 

If all the atoms have the same or similar scattering 
factors, then by choosing w' -~  lift  the normal 
equations become identical with the modified 
differential Fourier equations; or conversely, re- 
taining the proper w', the normal equations are 
identical with the Fourier equations for weighted 
electron densities Q'. If the atoms have different f 's ,  
on choosing w' ---- lift  or using weighting factors W'fr, 
the only identical corresponding equations are those 
involving derivatives evaluated at atom r or at atoms 
with the same or similar scattering factors as r. 
This last point is important theoretically, for it shows 
that  despite their remarkable similarities the least- 
squares and modified Fourier methods are fundamen- 
tally distinct. However, it will appear from the 
discussion of the approximate forms of the equations 
for complete three-dimensional summation that, with 
appropriate weighting factors, coordinates found by 
both methods are approximately the same. 

There is also a set of least-squares equations 
corresponding to (2.2) obtained from the complete 
multivariate Taylor expansions of OR/Oxri, namely, 

aFc + ~ e,j . w (Fo -- F~) a~F¢ 

(2.12) 
- - ~  e~ ~ w  ~F~ ~F~ = 0 .  

s, ~ OXri ~X s] 

2.3. Approximate equations 
We have seen how both the modified Fourier and 

least-squares methods lead to sets of simultaneous 
equations, (2.5) and (2.7), in the refinement para- 
meters. We shall now show that  it is often unnecessary 
to compute in detail all the terms of these equations, 
and that  the set of equations in all the parameters 

often approximately reduces to sets of equations in 
one or a few parameters. For convienience we shall 
discuss the modified :Fourier method; the corre- 
sponding discussion for least squares can be obtained 
by replacing ~'s by ~"s. 

The problem is to determine which coefficients, 

Ox v \Ox~/r V ai __ ~x~i sin Or, (2"4) 

of the es/s in (2.5) are large. As a first step towards 
this we reinterpret these coefficients; a reinterpretation 
which is itself of interest. 

In this section we shall rigourously adopt the rule 
that  xsj denotes one of the independent parameters 
of the structure, and that, if t is one of the atoms re- 
lated to s by symmetry, xtk denotes the kth coordinate 
of atom t, and that  differentiation of any function 
with respect to xt~ does not imply changes in the co- 
ordinates of any other atom, whether related to s by 
symmetry or not. 

We have already remarked in § 2.1 that  in (2.2), 
and thus also in (2.5), we could have treated the 
x,j's either as independent parameters or as atomic 
coordinates; hitherto we have adopted the former 
point of view, but if we now adopt the latter point 
of view, but adhere to the notation just defined, we 
can write (2-5) as 

\Oxi/r-4- __Z.~ ~'t "~k etk --~xtk r ' (2.13) OX~/r 
where 

1 
Qt = ~ f t  cos ( 0 - 0 3 ,  

is the finite-series electron density due to atom t 
alone, and the summation over t includes all atoms 
related to s by symmetry, so that  the triple summation 
over s, t and k includes all the coordinates of all the 
atoms in the unit cell. 

:Now 
/ = _ ( / 

axtk \ axi/r \ ~xx/~-xxk/r' (2.14) 

substituting this in the second group of terms on the 
right-hand side of (2.13) gives an expression for the 
change of slope of Qc at r, which is the same as we 
should have derived from a geometrical point of view, 
from which, regarding Qc as the sum of the Qt's of all 
the atoms in the unit cell, the change of slope of ~c 
is equal to minus the sum of the displacements of all 
the atoms multiplied by the respective second de- 
rivatives of  the atomic densities evaluated at r. 

Further 
axtk 

= ; (2.15) etl~ ~sl ~Xs] 

where we remark that  axtk/ax~j = 0 for j ~ k in a 
monoclinic space group, say, but---= -4-1 for a cubic 
space group. 

Thus the coefficient (2-4) of e~i in (2.5) may be 
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written OXtk ( O2~t I 
• - z  z (2.1 1 

I t  is also possible to obtain this result directly from 
(2.4), thus checking tha t  the alternative treatments of 
(2.2) are equivalent. :For 

F~ = f~ ~ cos Ot 
t 

~-- f~ .~ cos (2z .~ h~%/a~). 
t k 

Hence 
OF_____~ = _ f ~ .X, * 2~ h2 ~xt____~ sin Or. 
8Xs i t ~ ak 8xs~ 

Substituting this in (2.4), we again reach (2.16) on 
noticing tha t  

~xt~ sin Ot sin Or 
t 8x~ 

= 2 ½ (cos (o,-o )-cos (0,+0r)) (2.17) 

8xt~ 

space group is centrosymmetric, and since the 
oxtk/Ox~j = --  a ( --  x~) / ox#. 

For simplicity supposing for the moment that  
Oxtt,/Ox~i-~ 0 for j ~ k, we may  note tha t  (2.16) is 
not equal to --(02~/Ox~0xl)~, where ~s --  ~Y ~t, for 

t 
this is equal to --.a~,(O~dOxiOxi)~, the term ~xtl/Ox~ 

t 
which may  be ~: 1 not appearing. 

The problem of determining which of the co- 
efficients (2.4) are important  is now one of finding 
which of the terms (O~t/Oxi~xl)~ are large. These 
terms are second derivatives of the density of atom t 
evaluated at the position of atom r. They will be 
small unless the finite series densities of atoms t and 
r overlap. We shall discuss the approximate values 
of the coefficients in detail for the cases of complete 
three-dimensional summation within a large reciprocal 
sphere, and of the corresponding two-dimensional 
summation. 

Consider first the three-dimensional case. By 
complete summation within a large reciprocal sphere 
we imply tha t  the limiting reciprocal radius is such 
that  the value at the minimum interatomic distance 
of the finite series representing the electron density 
of any atom is small in comparison with the value at 
its atomic position of the series representing any other 
atom, and tha t  no reflexions are omitted within this 
reciprocal sphere. In these circumstances all the terms 
(O~dOx~OX~)r are negligible for t ~ r, and consequently 
the coefficients of all the s s ( s ~  r) in (2.5) are 
negligible. If ~ is the finite series representing atom r 
alone, the non-negligible part  of the coefficient of 
sri in (2.5) is 

axr~ ( o2~r / = - - (  °2~r / 

since for j ; ~  k either ~xr~/~x~j--O, or, if not, 
(a~ QJax~axk)r = O. 

Similarly the coefficient of er~ in (2.5) is --(OgQ,./Ox~)r. 
Consequently, in this three-dimensional case the 

approximate form of (2.5) is 

( / 
Thus the set of equations (2.5), simultaneous in all 

the parameters, approximately reduces to inde- 
pendent sets of equations, each set involving only the 
parameters of one atom. These sets correspond to the 
equations discussed in an earlier paper (Cruickshank, 
1950). 

As a series, 
_ _ (  82Qr / _____ 1 492 hjyr, (2-19) 

where the summation is over all planes within the 
reciprocal sphere (and thus includes any planes which 
may  have been systematically absent in the original 
space group). 

I t  often happens, for example for orthorhombic 
cells or for monoclinic cells with ~ nearly 90 °, tha t  
(~2~r/~xiOxj) ~ is negligible for i ~ j .  In  this case 
(2.18) becomes 

O x d ~ - -  \ ~ x d r  er~ ~ , (2 -20)  

so tha t  each parameter is determined from a single 
equation. 

In  the case of complete two dimensional summation 
within a reciprocal circle the terms (~2~t/~xi~x~) r may 
not be negligible either if atom t, being related to r 
by symmetry,  coincides with r in projection, or if 
atom t (not necessarily related to r by symmetry)  
overlaps atom r in the projection. In  the former case 
the coefficient of e~ will be a simple multiple of 

- ( / = 
\~xi~xi/r A aia i 9. 

In  the lat ter  case it is necessary to compute fully 
either 

__ ( 02~t - ] __ 1 4 ~ 2 h ,  h~f " cos (Or--Or), 
\o~i~xT/~-- A a~ai 2 

or the proper coefficient of esi. 
If none of the atoms related to s by symmetry  

overlap atom r in the projection the coefficient of e~; 
in (2.5) may be neglected. Thus the two-dimensional 
form of the set of equations like (2-5) approximately 
reduces to a set in which the only important  cross 
terms arise from overlapping peaks, and this set may  
in fact break up into a number of independent sets 
of equations. 

2.4. Connection with Booth's back-correction method 
In  Booth's (1945, 1946) back-correction method, 

corrections are found from a calculated synthesis 
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based on the maxima of the final observed synthesis, 
using the displacements of the calculated synthesis 
with reversed signs as corrections. In  the present 
notation, coordinate corrections to atom r are de- 
termined from three equations of the type 

Erj 
~Xi]r \ OXi]r i \ ~Xi~Xi/r 

(We have included the term (OQo/~x~)r on the left- 
hand side, though it is actually zero, to clarify the 
relation of Booth's method to (2-5); as written, (2-21) 
is a generalization of Booth's method for any set of 
trial coordinates.) The conditions for the equivalence 
of Booth's method and the modified differential 
Fourier method are tha t  the coefficient of e~i (s ~ r) 
in (2.5) should be zero, and tha t  the coefficient of er~ 
in (2.5) can be written as in (2.21). The discussion of 
§ 2-3 shows tha t  these conditions are approximately 
fulfilled for complete three-dimensional summation 
within a large reciprocal sphere, since then for 
t ~ r (O~@dOxiOx~)r is negligible and so (O~@dOxiOxi)r -= 
(OzOr/Ox~Oxi)r. The correct refinement to atom r is 
also given in the two-dimensional ease if no other 
atom overlaps r. 

Unfortunately the condition of completeness is not 
always fulfilled in practice, for, although observations 
may  be made for a spherical region of reciprocal space, 
many reflexions may  be too weak to be recorded. 
These missing low-valued F's may make only a small 
difference to the value of the observed electron density 
at  any point, but, though the peaks may  be well 
resolved in the ordinary sense, it is no longer true 
tha t  near atom r@c is nearly equal to @r, for in this 
lat ter  series any omitted term is important.  

If, despite (O~@doxioxi) r = (O~@r/OxiOxl)r, none of the 
(O~dOxioxl)r are large in comparison with (Oe@r/OxiOxi)r, 
then a first approximation to (2.5) still gives (2.18). 
In  the series (2.19) terms corresponding to those 
accidentally unobserved must be omitted, but  syste- 
matic absences must  still be allowed for. To avoid 
including contributions corresponding to systematic 
absenees outside the region of observation, this is most 
convieniently done by summing only for the planes 
actually observed but  with appropriate multiples in 
the zones of systematic absences. 

The above reasoning suggests tha t  for the ease of 
three-dimensionM summation with accidental omis- 
sions the corrections given by Booth's method will be 
a little too small, but  even augmented corrections will 
be not quite correct owing to the neglect of the cross 
terms of (2.5) in (2.18). 

In  the practical use of (2.5) it may  be unnecessary 
to compute the series for (O@o/OX,)r and (oOdoxi) . if 
difference (@o--~o,) maps (see e.g. Coehran, 1951) are 
being used, as [O/Oxi(~o--@,)]r may be interpolated 
from these. In part,  the present paper is a eontribution 
to the theory of difference maps. Also, if (2.21) is 
being used, it may  suffice to use. in place of the 
(O2~,/Ox, Oxl), the (Oe~o/OxiOx~)r which may be avail- 

able by interpolation from the observed electron- 
density map. 

3. N o n - c e n t r o s y m m e t r i c  space g roups  

3.1. Equations of the modified Fourier method 
We must now allow for the variation of phase angles 

with changing coordinates. We shall keep to the con- 
vention tha t  xsj is one of the independent parameters, 
and tha t  xtk denotes a coordinate of an atom t related 
to s by symmetry.  We shall use A and B to denote the 
real and imaginary parts of the structure factor, so 
that ,  in particular, 

As -- .~,f~ cos Or; Bs = Z f ~  sin Or. (3-1) 
t t 

a will denote the phase angle of F~; ~ = tan- l (B/A) .  
I t  will be convienient to state two results now: 

01Fcl oA, oBs 
- -  - -  eos ~ + sin c~ 

Oxsi Ox~ ~xsl. 

hk OXtk . 
---- --'~'k ~-L'2zr ~ ff~XsjJS s i n t  (0t--oQ ; 

(3.2) 

0 o ¢ _  1 ( OA, sin OB, ~x) 

= Z~Y, 2z  hkaxte fs cos (0t--~) • 
k t ae Ox~j I Fcl 

(3"3) 

Corresponding to (2-2), the equation for small 
refinements is 

\ axi/r j ~ \ axi/r 
(3.4) 

\ ~Xi]r j ~ \ ~Xi]r " 

In  this equation 

a (~Oo I _ 1 2z~ 

(3.5) 
_ 1 2re yhi lFol  cos (Or--a) ~---~ 

V a i ~'~ ~x,i 

1 4-u 2 Oxte IFol. 
= --V ~ ~t aiak Ox , ,~  hihk [-~cl Js c°s(Or--~x) c°s(O'--~x)' 

by (3"3). (3"6) 

Instead of 'writ ing 

_ _  hi OAs sin 0r 

1 2z~ ~" hi OBs 
+ ff a--/- 0x,--~. cos Or, (3"7) 

it proves more useful to use the alternative expression 
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(0~¢ / __-- 1 2~r 
sin (0~-~) 

+ V - ~ I  2~ ~h~]Fd cos (0~--~) Ox,--~'O°~ (3"8) 

where the second sum can be written in a form similar 
to (3-6). 

If, as in (2.5), we form the equations to make the 
slopes of 0o and ~¢ equal at the trial positions, we 
simply omit the second group of terms on both sides 
of (3.4). Further, we may notice that  for nearly correct 
positions the difference between (3-5) and the second 
part of (3.8) is small in comparison with the first part 
of (3.8). If we may neglect this difference, and omit 
the second groups of terms in (3.4), we have the 
equations 

which we shall call the modified differential Fourier 
equations for non-centrosymmetric space groups. 

3.2. The normal equations of least squares 
We shall now consider the normal equations for the 

function 
t t  ---- _rw(lFo[--IFJ) 2 . (1.3) 

These are usually written 

~Yc~,.qe,j = b~, (3.10) 
where s, i 

elFJ 
b~i = - ~ w ( I F o I - I F J ) - - ,  

0x~ 

and c~,,j = Ew ~IF=I ~IFJ.  
Oxri OXsi 

By following through an argument similar to that  
used for centro-symmetric space groups, we find that  
(3-10) may be written 

( 00~o I --_ (00: I __ 1 2~ Z w'f,~, 0!F~] sin (0~--c~), 
Oxi/~ \ Oxi/r ~' i e~i'-# a~ s vxsj 

(3"11) 

which is the equation for the weighted electron density 
corresponding to (3.9). 

If we consider the complete multivariate Taylor 
expansions of ~R/Ox~, as in (2.12), we add to (3.10) 
terms of the type 

~IFJ 
~,j-rw(IFol-IFJ) ax,jax~ • 

Expressed as functions of the weighted electron density 
these terms added to (3.11) give the equation corre- 
sponding to (3.4). Thus we see that  the same relations 
which hold between the least-squares and m6dified 
Fourier methods for centrosymmetric space groups 
hold also for non-centrosymmetric space groups. 

3.3. Approximate equations 
Using (3.2), the coefficient of ~i in (3.9) may be 

written 
1 27t ~, ~ 2~ --axt~ aV h~hkf " sin (0t--c~) sin (0~--c~). 
Va~ t k a~0xsj a 

(3.12) 
Now ~ 0xtk sin (0t--a) sin (0 , -~)  

7 0Xs~ (3"13) 

Thus the contribution of the first group of terms in 
(3.13) to the coefficient of % in (3.9) is 

axtk / a20t "~ 
--½ ~ ~ ~ ~OxiOx-----~],' (3"14) 

which is half the coefficient (2.16) of e~j in the corre- 
sponding equation (2.5) for eentrosymmetric space 
groups, and so the discussion of the approximate 
value of (2.16) gives the approximate value of (3-14). 

The approximate contribution of the second group 
of terms in (3.13) is more difficult to assess. We shall 
consider several particular cases: 

First, suppose that  we are dealing with a two- 
dimensional projection which is centrosymmetrie. 
Then 2~ ~ 0 or 2g, and so, by the same argument as 
followed (2-17), th i s  second group of terms makes 
another contribution to the coefficient of esj equal to 
(3.14), giving the same totM as we derived in the 
centrosymmetric theory. 

In the case of a three-dimensional summation for the 
triclinic space group with no centre of symmetry, and 
for a structure not dominated by any heavy atom, 
we may expect that  any of the sums 

hihkJ', cos (Ot+Or--2ot) (3.15) 
3 

will be small since some cosine terms are likely to be 
positive and some negative. 

For a three-dimensional summation for a space 
group which is centrosymmetric in certain projections 
we may again expect that, excluding the summations 
for these projections, the sums (3-15) over the general 
planes will be small. Accordingly, for example, in the 
space group P21 for complete three-dimensional sum- 
mation we may expect that. the coefficient of e~ in 
(3.9) will be approximately 

1 1 4 ~  2 
nh~fr , (3.16) 

2 V a~ 

where m = 1 for the general hkl reflexions, and m = 2 
for hOl (and m = 2 for the 0k0 planes observed if the 
systematic absences are excluded from the summation). 

Thus we see that  for no symmetry the coordinate 
refinements for non-centrosymmetric space groups are 
twice those for centrosymmetric space groups, while 
if the structure is centered in certain projections the 
refinements are of intermediate value. The above 
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appears to be the theoretical basis of the 'n shift rule' 
introduced by Shoemaker, Donohue, Schomaker & 
Corey (1950). 

4. The Pa t te r son  d e n s i t y  

4.1. Equations of the modified Patterson method 
In § 1 we introduced as a criterion for the deter- 

mination of atomic coordinates the condition that  the 
slopes of the observed and calculated electron den- 
sities should be equal at the atomic positions. We can 
introduce a similar criterion for determining atomic 
coordinates from the Patterson density: namely, that  
the slopes of the observed and calculated Patterson 
densities should be equal at the interatomic vectors. 

If u and r denote atoms, we may express this 
symbolically as 

,, , - , ' (4.1) 

where Po is the observed Patterson density 

1 
Po = - -~ ,  ]Fot ~ cos O, 

V ~  

and Pc is the calculated Patterson density 

1 
Pc : -- Z IF, I 2 cos 0.  

V 3  

As in the modified Fourier method, we can derive 
equations for small parameter refinements. Corre- 
sponding to (2.5) we may derive the equation 

/ / , 
" ox, (4.2) 

where 

Oxs: \-~Xi/u_ , -  V a i ~ 2h~lF~l~x,. sin (Ou--Or). (4"3) 

Now there are more criteria of the type (4.1) than 
there are independent parameters, and accordingly 
the complete set of equations of the type (4.2) for all 
atoms u and r will be inconsistent. One way of getting 
only as many equations as there are parameters is to 
take the equations of type (4.2) for fixed r and sum 
them over all atoms u in the unit cell. 

4.2. The normal equations of least squares 
We now consider the normal equations for the 

function 
R 2 = Zw"(IFol 2 -  ]Fcl2) 2 , (1.5) 

(for correct weighting w" = w/IFol2). 
The normal equations corresponding to (2.7) are 

~lFcl 
.Z w" (IFoP-- IF~I2)IFcI - 

axr~ 
~IF~l ~IF~l 

: .~'e#~.,'2w"lF~[ e . (4.4) 
s, i OXs/ ~Xri 

The relation between this equation and that  derived 
from (4-2) by summing over u can be seen as follows. 
Introduce a weighted Patterson density 

1 p a r  __ -- -~ ~ w'"fuf iF 2 cos 0,  (4.5) 

where w'"p = w", p being the number of planes 
related by symmetry. Corresponding to (4.2) we may 
write 

( ~pur I = (opur I 0 (oP~r I • ( 4 . 6 )  

If we sum the equations of this type for given r over 
all atoms u in the unit cell, we get the equation 

1 ,,, 2~ h _ - ~ Y  w (]Fol2--IFcl2)]Fcl -~i i J~sin (O~--a) 
(4.7) 

1 ~]F d 2 ~  h " 
-- V :e~ j~2w ' " ]F~]2  ~ J~ sin (0~--~). 

• Oxsj 

This equation is equivalent to (4.4) by the same ar- 
gument as showed (2.11) equivalent to (2.7). Thus, 
from the weighted Patterson densities we have derived 
an equation for small coordinate refinements which is 
the same as the least-squares normal equation for the 
function R 2. 

If all the atoms have the same scattering factor, 
then by choosing w'" = 1If 2 the normal equations are 
identical with the corresponding unweighted Patterson 
refinement equations. If the atoms have different f ' s  
then there is no choice of w'" which makes any of the 
corresponding equations identical. 

An important question is the comparison between 
the coordinates determined by least squares from R, 
(1.3), and R 2, (1-5). 

The conditions ~R/~x~i-  0 are 

~]Fcl 
Zw([FoI--IFl~) : 0 ,  

~x~ (4.8) 

and the conditions ~Re/~X~i : 0 are 
~lF~l 

Zw(IFo]2--]Fcl2)]F:[ = 0.  (4.9) 

If we choose w " =  w/IFol 2, (4.9) becomes 

IF=] [F=12~ ~ l F ~ l  0 
5 w  (rol i-~o I --IF~I iTool2 / ~x~ " 

(4.10) 

Thus different coordinates will be found by both 
methods, though, since I Fct/IFo] is nearly unity for small 
errors AF,  (4.10) confirms the expectation that  the 
two sets of coordinates are approximately the same. 

4.3. Approximate equations 
Comparison of (4.7) with (3-9) shows that  in the 

coefficient for e~j each term of the series in (4-7) is 
w"'IFd2fr times the corresponding term in (3"9). 
Accordingly, similar trigonometric manipulation to 
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t h a t  used in § 3.3 is applicable to the coefficient of 
~,~ in (4-7). 

Corresponding to (3.14), we find t h a t  the  first  pa r t  
of the  coefficient of e,i in (4.7) is equal to 

~x~ \ Oxi~xkA_ r" 

The terms (O~P~/~xiOxk)t_~ are second derivatives 
of a weighted Pa t t e r son  densi ty  evalua ted  a t  the  
in tera tomie  vector  between t and r. I n  comparison 
with the  t e rm for t ----- r, which gives a second derivat ive 
of the  origin peak,  the  te rms for t ;~ r will be small, 
unless we are considering a projection in which t 
either overlaps or coincides with r. 

As in § 3"3, if the  s t ruc ture  is centrosymmetr ic  the  
terms corresponding to the  second group in (3.13) 
give a fur ther  contr ibut ion to the  coefficient of e~j 
equal to (4.11). 

Thus the  theory  of the  approximat ion  of (4.7) is 
ra ther  similar to the theory  of the  approximat ion  of 
(3.9) and (2.5), so t h a t  in the  approx imate  form of the  
normal  equations for R~ cross terms only arise in two- 
dimensional problems where the  a toms overlap or 
coincide. 
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(Re9u le 18 ddcembre 1951) 

The theory is developed of the X-ray  scattering by SiC crystals of the usual 4-, 6- and 15-layer 
types, wtfich show order in two translation directions but  disorder in the third direction. A '4-layer 
influence' for the 4- and 6-layer types, and a '6-layer influence' for the 15-layer type is postulated. 
Furthermore,  it is put  forward tha t  four layers can never be arranged in a hexagonal close-packed 
way, and five layers never in a cubic way. The description of the disorder then needs one parameter  
a or two parameters c~ and ft. The intensity of diffraction is expressed in terms of two quantities 
Xn and Cn, which themselves depend upon c~ (or a and fl), where a (~ and fl) is (are) the probability(s) 
tha t  a fifth (seventh) layer continues a cubic arrangement of the 4 (6) preceding layers. The line 
widths and displacements of the positions of certain reflexion maxima depend on the degree of 
order. Numerical da ta  and comparision with experimental results will be communicated later. 

1. I n t r o d u c t i o n  

Jagodzinski  & Laves  (1948) ont in t rodui t  le te rme 
'ordre d@fectueux unidimensionnel '  (eindimensionale 
Fehlordnung) pour  les cr is taux qui pr@sentent un  ordre 
parfa i t  dans deux directions de t ranslat ions,  mais un 
d@sordre dans la troisi@me. Les t r a v a u x  de Landau  
(1937) et Lifschitz (1937, 1939) nous ont montr6 
comment  il fallait  aborder  le probl~me du calcul de 
l'intensit@ des rayons  X diffract6s pa r  de tels cristaux. 
Hendricks  & Teller (1942) et Wilson (1942) ont calcul@ 
quelques cas sp~ciaux off il n ' y  a pas d 'act ion r~ci- 
proque entre les diverses couches. Ces auteurs  se sont 
occup@s ~galement des cr is taux hexagonaux  et cu- 
biques, qui pr@sentent des irr@gularit@s dans la suc- 
cession des couches dans le sens de l 'empilement  com- 

pact .  Ils ont postul~ une influence des deux derni~res 
couches, c'est-~-dire chaque nouvelle touche est con- 
ditionn@e par  les deux pr~c@dentes. On dit  alors, en 
emplos;ant la nota t ion  de Jagodzinski  (1949a, b, c), 
que le r ayon  d 'act ion des forces ordonnantes  est 
s ~ 2. Ce dernier a @tendu la m~thode de Wilson et a 
r~solu ainsi le probl~me pour  un empflement  compact  
off l 'on postulerai t  s ~ 3. E n  m6me temps  fl a t t i r a  
l ' a t tent ion  sur le fair  que cette m~thode pourra i t  
encore @tre @tendue aux  cas oh s aura i t  une valeur  
sup~rieure; mais qu 'on se heur te ra i t  alors ~ de graves 
difficult@s d 'ordre  math~mat ique .  

Nous pr@senterons la solution pour  un  cas sp@cial 
de s-----4, applicable aux  cr is taux de SiC avec une 
p~riodicit@ 4 et 6, et un cas special de s ~ 6, ap- 


